
NAG C Library Function Document

nag_zhsein (f08pxc)

1 Purpose

nag_zhsein (f08pxc) computes selected left and/or right eigenvectors of a complex upper Hessenberg
matrix corresponding to specified eigenvalues, by inverse iteration.

2 Specification

void nag_zhsein (Nag_OrderType order, Nag_SideType side,
Nag_EigValsSourceType eig_source, Nag_InitVeenumtype initv,
const Boolean select[], Integer n, const Complex h[], Integer pdh, Complex w[],
Complex vl[], Integer pdvl, Complex vr[], Integer pdvr, Integer mm,
Integer *m, Integer ifaill[], Integer ifailr[], NagError *fail)

3 Description

nag_zhsein (f08pxc) computes left and/or right eigenvectors of a complex upper Hessenberg matrix H,
corresponding to selected eigenvalues.

The right eigenvector x, and the left eigenvector y, corresponding to an eigenvalue �, are defined by:

Hx ¼ �x and yHH ¼ �yH ðor HHy ¼ ���yÞ:
The eigenvectors are computed by inverse iteration. They are scaled so that maxðjReðxiÞj þ jImðxiÞjÞ ¼ 1.

If H has been formed by reduction of a complex general matrix A to upper Hessenberg form, then the
eigenvectors of H may be transformed to eigenvectors of A by a call to nag_zunmhr (f08nuc).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: side – Nag_SideType Input

On entry: indicates whether left and/or right eigenvectors are to be computed as follows:

if side ¼ Nag RightSide, only right eigenvectors are computed;

if side ¼ Nag LeftSide, only left eigenvectors are computed;

if side ¼ Nag BothSides, both left and right eigenvectors are computed.

Constraint: side ¼ Nag RightSide, Nag LeftSide or Nag BothSides.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08pxc

[NP3645/7] f08pxc.1



3: eig_source – Nag_EigValsSourceType Input

On entry: indicates whether the eigenvalues of H (stored in w) were found using nag_zhseqr
(f08psc) as follows:

if eig source ¼ Nag HSEQRSource, then the eigenvalues of H were found using
nag_zhseqr (f08psc); thus if H has any zero sub-diagonal elements (and so is block
triangular), then the jth eigenvalue can be assumed to be an eigenvalue of the block
containing the jth row/column. This property allows the function to perform inverse iteration
on just one diagonal block;

if eig source ¼ Nag NotKnown, then no such assumption is made and the function performs
inverse iteration using the whole matrix.

Constraint: eig source ¼ Nag HSEQRSource or Nag NotKnown.

4: initv – Nag_InitVeenumtype Input

On entry: indicates whether the user is supplying initial estimates for the selected eigenvectors as
follows:

if initv ¼ Nag NoVec, no initial estimates are supplied;

if initv ¼ Nag UserVec, initial estimates are supplied in vl and/or vr.

Constraint: initv ¼ Nag NoVec or Nag UserVec.

5: select½dim� – const Boolean Input

Note: the dimension, dim, of the array select must be at least maxð1; nÞ.
On entry: select specifies which eigenvectors are to be computed. To select the eigenvector
corresponding to the eigenvalue w½j�, select½j� must be set to TRUE.

6: n – Integer Input

On entry: n, the order of the matrix H.

Constraint: n � 0.

7: h½dim� – const Complex Input

Note: the dimension, dim, of the array h must be at least maxð1; pdh� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix H is stored in h½ðj� 1Þ � pdhþ i� 1�
and if order ¼ Nag RowMajor, the ði; jÞth element of the matrix H is s tored in

h½ði� 1Þ � pdhþ j� 1�.
On entry: the n by n upper Hessenberg matrix H.

8: pdh – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array h.

Constraint: pdh � maxð1; nÞ.

9: w½dim� – Complex Input/Output

Note: the dimension, dim, of the array w must be at least maxð1; nÞ.
On entry: the eigenvalues of the matrix H. If eig source ¼ Nag HSEQRSource, the array must be
exactly as returned by nag_zhseqr (f08psc).

On exit: the real parts of some elements of w may be modified, as close eigenvalues are perturbed
slightly in searching for independent eigenvectors.

f08pxc NAG C Library Manual

f08pxc.2 [NP3645/7]



10: vl½dim� – Complex Input/Output

Note: the dimension, dim, of the array vl must be at least

maxð1; pdvl�mmÞ when side ¼ Nag LeftSide or Nag BothSides and
order ¼ Nag ColMajor;

maxð1; pdvl� nÞ when side ¼ Nag LeftSide or Nag BothSides and
order ¼ Nag RowMajor;

1 when side ¼ Nag RightSide.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in vl½ðj� 1Þ � pdvlþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix is stored in vl½ði� 1Þ � pdvlþ j� 1�.
On entry: if initv ¼ Nag UserVec and side ¼ Nag LeftSide or Nag BothSides, vl must contain
starting vectors for inverse iteration for the left eigenvectors. Each starting vector must be stored in
the same row or column as will be used to store the corresponding eigenvector (see below). If
initv ¼ Nag NoVec, vl need not be set.

On exit: if side ¼ Nag LeftSide or Nag BothSides, vl contains the computed left eigenvectors (as
specified by select). The eigenvectors are stored consecutively in the rows or columns of the array
(depending on the value of order), in the same order as their eigenvalues.

vl is not referenced if side ¼ Nag RightSide.

11: pdvl – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vl.

Constraints:

if order ¼ Nag ColMajor,
if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1; nÞ;
if side ¼ Nag RightSide, pdvl � 1;

if order ¼ Nag RowMajor,
if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1;mmÞ;
if side ¼ Nag RightSide, pdvl � 1.

12: vr½dim� – Complex Input/Output

Note: the dimension, dim, of the array vr must be at least

maxð1; pdvr�mmÞ when side ¼ Nag RightSide or Nag BothSides and
order ¼ Nag ColMajor;

maxð1; pdvr� nÞ when side ¼ Nag RightSide or Nag BothSides and
order ¼ Nag RowMajor;

1 when side ¼ Nag LeftSide.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix is stored in vr½ðj� 1Þ � pdvrþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix is stored in vr½ði� 1Þ � pdvrþ j� 1�.
On entry: if initv ¼ Nag UserVec and side ¼ Nag RightSide or Nag BothSides, vr must contain
starting vectors for inverse iteration for the right eigenvectors. Each starting vector must be stored
in the same row or column as will be used to store the corresponding eigenvector (see below). If
initv ¼ Nag NoVec, vr need not be set.

On exit: if side ¼ Nag RightSide or Nag BothSides, vr contains the computed right eigenvectors
(as specified by select). The eigenvectors are stored consecutively in the rows or columns of the
array (depending on the value of order), in the same order as their eigenvalues.

vr is not referenced if side ¼ Nag LeftSide.

13: pdvr – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vr.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08pxc

[NP3645/7] f08pxc.3



Constraints:

if order ¼ Nag ColMajor,
if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1; nÞ;
if side ¼ Nag LeftSide, pdvr � 1;

if order ¼ Nag RowMajor,
if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1;mmÞ;
if side ¼ Nag LeftSide, pdvr � 1.

14: mm – Integer Input

On entry: the number of columns in the arrays vl and/or vr if order ¼ Nag ColMajor or the
number of rows in the arrays if order ¼ Nag RowMajor. The actual number of rows or columns
required, required rowcol, is obtained by counting 1 for each selected real eigenvector and 2 for
each selected complex eigenvector (see select); 0 � required rowcol � n.

Constraint: mm � required rowcol.

15: m – Integer * Output

On exit: required rowcol, the number of selected eigenvectors.

16: ifaill½dim� – Integer Output

Note: the dimension, dim, of the array ifaill must be at least maxð1;mmÞ when side ¼
Nag LeftSide or Nag BothSides and at least 1 when side ¼ Nag RightSide.

On exit: if side ¼ Nag LeftSide or Nag BothSides, then ifaill½i� = 0 if the selected left eigenvector
converged and ifaill½i� ¼ j � 0 if the eigenvector stored in the ith row or column of vl
(corresponding to the jth eigenvalue) failed to converge.

ifaill is not referenced if side ¼ Nag RightSide.

17: ifailr½dim� – Integer Output

Note: the dimension, dim, of the array ifailr must be at least maxð1;mmÞ when side ¼
Nag RightSide or Nag BothSides and at least 1 when side ¼ Nag LeftSide.

On exit: if side ¼ Nag RightSide or Nag BothSides, then ifailr½i� = 0 if the selected right
eigenvector converged and ifailr½i� ¼ j � 0 if the eigenvector stored in the ith column of vr
(corresponding to the jth eigenvalue) failed to converge.

ifailr is not referenced if side ¼ Nag LeftSide.

18: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, mm = hvaluei.
Constraint: mm � required rowcol, where required rowcol is the number of selected eigenvectors.

On entry, pdh ¼ hvaluei.
Constraint: pdh > 0.

On entry, pdvl ¼ hvaluei.
Constraint: pdvl > 0.

f08pxc NAG C Library Manual

f08pxc.4 [NP3645/7]



On entry, pdvr ¼ hvaluei.
Constraint: pdvr > 0.

NE_INT_2

On entry, pdh ¼ hvaluei, n ¼ hvaluei.
Constraint: pdh � maxð1; nÞ.

NE_ENUM_INT_2

On entry, side ¼ hvaluei, n ¼ hvaluei, pdvl ¼ hvaluei.
Constraint: if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1; nÞ;
if side ¼ Nag RightSide, pdvl � 1.

On entry, side ¼ hvaluei, n ¼ hvaluei, pdvr ¼ hvaluei.
Constraint: if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1; nÞ;
if side ¼ Nag LeftSide, pdvr � 1.

On entry, side ¼ hvaluei, mm ¼ hvaluei, pdvl ¼ hvaluei.
Constraint: if side ¼ Nag LeftSide or Nag BothSides, pdvl � maxð1;mmÞ;
if side ¼ Nag RightSide, pdvl � 1.

On entry, side ¼ hvaluei, mm ¼ hvaluei, pdvr ¼ hvaluei.
Constraint: if side ¼ Nag RightSide or Nag BothSides, pdvr � maxð1;mmÞ;
if side ¼ Nag LeftSide, pdvr � 1.

NE_CONVERGENCE

hvaluei eigenvectors (as indicated by arguments ifaill and/or ifailr) failed to converge. The
corresponding columns of vl and/or vr contain no useful information.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

Each computed right eigenvector xi is the exact eigenvector of a nearby matrix Aþ Ei, such that
kEik ¼ Oð�ÞkAk. Hence the residual is small:

kAxi � �ixik ¼ Oð�ÞkAk:
However, eigenvectors corresponding to close or coincident eigenvalues may not accurately span the
relevant subspaces.

Similar remarks apply to computed left eigenvectors.

8 Further Comments

The real analogue of this function is nag_dhsein (f08pkc).

9 Example

See Section 9 of the document for nag_zunmhr (f08nuc).

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08pxc

[NP3645/7] f08pxc.5 (last)


	f08pxc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	eig_source
	initv
	select
	n
	h
	pdh
	w
	vl
	pdvl
	vr
	pdvr
	mm
	m
	ifaill
	ifailr
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_CONVERGENCE
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction



